Derivative-Solver.com
Partial Derivatives
>
(\partial}{\partial z}(\frac{xy)/z)
Derivatives
Multiple Derivatives
Partial Derivatives
Implicit Derivatives
Study Guides
∂
∂
z
(
xy
z
)
=
−
xy
z
2
Show Steps
« hide steps
∂
∂
z
(
xy
z
)
=
−
xy
z
2
steps
∂
∂
z
(
xy
z
)
Treat
x
,
y
as
constants
Take
the
constant
out
:
(
a
·
f
)
′
=
a
·
f
′
=
xy
∂
∂
z
(
1
z
)
Apply
exponent
rule
:
1
a
=
a
−
1
=
xy
∂
∂
z
(
z
−
1
)
Apply
the
Power
Rule
:
d
dx
(
x
a
)
=
a
·
x
a
−
1
=
xy
(
−
1
·
z
−
1
−
1
)
show steps
Simplify
xy
(
−
1
·
z
−
1
−
1
)
:
−
xy
z
2
=
−
xy
z
2
Number Line