ddx (2sec2(x)tan(x))=4sec2(x)+6sec4(x)
 
« hide steps
ddx (2sec2(x)tan(x))=4sec2(x)+6sec4(x)
  • steps
  • ddx (2sec2(x)tan(x))

  • Take the constant out:    (a·f)=a·f
    =2ddx (sec2(x)tan(x))

  • Apply the Product Rule:    (f·g)=f ·g+f·g
    f=sec2(x), g=tan(x)
    =2(ddx (sec2(x))tan(x)+ddx (tan(x))sec2(x))

  • show steps
    ddx (sec2(x))=2sec2(x)tan(x)
    show steps
    ddx (tan(x))=sec2(x)
    =2(2sec2(x)tan(x)tan(x)+sec2(x)sec2(x))

  • show steps
    Simplify 2(2sec2(x)tan(x)tan(x)+sec2(x)sec2(x)):    4sec2(x)+6sec4(x)
    =4sec2(x)+6sec4(x)

Number Line