Derivative-Solver.com
Partial Derivatives
>
partial derivative of x/(y^2+x^2)
Derivatives
Multiple Derivatives
Partial Derivatives
Implicit Derivatives
Study Guides
∂
∂
y
(
x
y
2
+
x
2
)
=
−
2
xy
(
y
2
+
x
2
)
2
Show Steps
« hide steps
∂
∂
y
(
x
y
2
+
x
2
)
=
−
2
xy
(
y
2
+
x
2
)
2
steps
∂
∂
y
(
x
y
2
+
x
2
)
Treat
x
as
a
constant
Take
the
constant
out
:
(
a
·
f
)
′
=
a
·
f
′
=
x
∂
∂
y
(
1
y
2
+
x
2
)
Apply
exponent
rule
:
1
a
=
a
−
1
=
x
∂
∂
y
(
(
y
2
+
x
2
)
−
1
)
show steps
Apply
the
chain
rule
:
−
1
(
y
2
+
x
2
)
2
∂
∂
y
(
y
2
+
x
2
)
=
−
1
(
y
2
+
x
2
)
2
∂
∂
y
(
y
2
+
x
2
)
show steps
∂
∂
y
(
y
2
+
x
2
)
=
2
y
=
x
(
−
1
(
y
2
+
x
2
)
2
·
2
y
)
show steps
Simplify
x
(
−
1
(
y
2
+
x
2
)
2
·
2
y
)
:
−
2
xy
(
y
2
+
x
2
)
2
=
−
2
xy
(
y
2
+
x
2
)
2
Number Line