ddx (2x(1+x2)2 )=2(3x2+1)(1+x2)3 
 
« hide steps
ddx (2x(1+x2)2 )=2(3x2+1)(1+x2)3 
  • steps
  • ddx (2x(1+x2)2 )

  • Take the constant out:    (a·f)=a·f
    =2ddx (x(1+x2)2 )

  • Apply the Quotient Rule:    (fg )=f ·gg·fg2 
    =2·dxdx (1+x2)2ddx ((1+x2)2)x((1+x2)2)2 

  • show steps
    dxdx =1
    show steps
    ddx ((1+x2)2)=4x(1+x2)
    =2·1·(1+x2)24x(1+x2)x((1+x2)2)2 

  • show steps
    Simplify 2·1·(1+x2)24x(1+x2)x((1+x2)2)2 :    2(3x2+1)(1+x2)3 
    =2(3x2+1)(1+x2)3 

Number Line