Derivative-Solver.com
Partial Derivatives
>
partial derivative of ln(x+sqrt(x^2+y^2))
Derivatives
Multiple Derivatives
Partial Derivatives
Implicit Derivatives
Study Guides
∂
∂
x
(
ln
(
x
+
√
x
2
+
y
2
)
)
=
1
√
x
2
+
y
2
Show Steps
« hide steps
∂
∂
x
(
ln
(
x
+
√
x
2
+
y
2
)
)
=
1
√
x
2
+
y
2
steps
∂
∂
x
(
ln
(
x
+
√
x
2
+
y
2
)
)
Treat
y
as
a
constant
show steps
Apply
the
chain
rule
:
1
x
+
√
x
2
+
y
2
∂
∂
x
(
x
+
√
x
2
+
y
2
)
=
1
x
+
√
x
2
+
y
2
∂
∂
x
(
x
+
√
x
2
+
y
2
)
show steps
∂
∂
x
(
x
+
√
x
2
+
y
2
)
=
1
+
x
√
x
2
+
y
2
=
1
x
+
√
x
2
+
y
2
(
1
+
x
√
x
2
+
y
2
)
show steps
Simplify
1
x
+
√
x
2
+
y
2
(
1
+
x
√
x
2
+
y
2
)
:
1
√
x
2
+
y
2
=
1
√
x
2
+
y
2
Number Line