Derivative-Solver.com
Partial Derivatives
>
∂/(∂x)(arctan(y/x))
Derivatives
Multiple Derivatives
Partial Derivatives
Implicit Derivatives
Study Guides
∂
∂
x
(
arctan
(
y
x
)
)
=
−
y
y
2
+
x
2
Show Steps
« hide steps
∂
∂
x
(
arctan
(
y
x
)
)
=
−
y
y
2
+
x
2
steps
∂
∂
x
(
arctan
(
y
x
)
)
Treat
y
as
a
constant
show steps
Apply
the
chain
rule
:
1
(
y
x
)
2
+
1
∂
∂
x
(
y
x
)
=
1
(
y
x
)
2
+
1
∂
∂
x
(
y
x
)
show steps
∂
∂
x
(
y
x
)
=
−
y
x
2
=
1
(
y
x
)
2
+
1
(
−
y
x
2
)
show steps
Simplify
1
(
y
x
)
2
+
1
(
−
y
x
2
)
:
−
y
y
2
+
x
2
=
−
y
y
2
+
x
2
Number Line